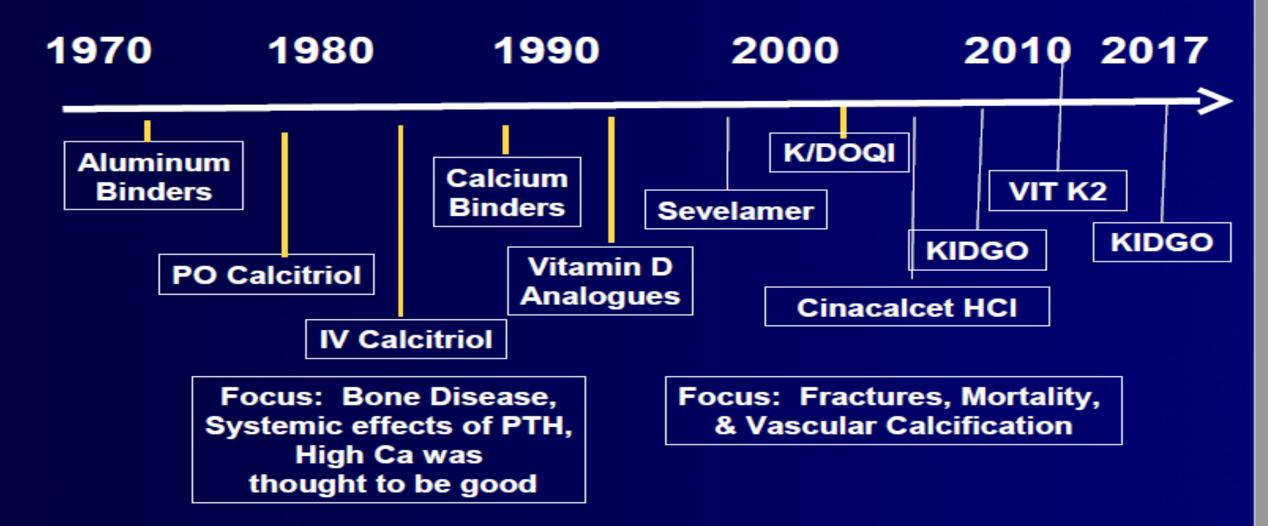

CKD-MBD: Classifications and Diagnosis



Dr. Houshang – Sanadgol Prof of Internal Medicine and Nephrology Tehran_Iran Jul.2020

Agenda

- The size of the problem (CKD-MBD)
- Definitions & Classifications
- Bone disease in CKD (B)
- Vascular calcifications/CVD (V/C)
- Role of Calcium and Phosphorus (L)
- Importance of Vitamin D in CKD-MBD (L)
- CKD & SHPT (L)
- Frequency of Monitoring
- CKD-MBD 2017 Guidelines (Diagnosis of CKD-MBD & VC)

History of Treatment Strategies for Secondary Hyperparathyroidism

Definition of CKD-MBD And Renal Osteodystrophy

Definition of CKD-MBD

- A systemic disorder of mineral and bone metabolism due to CKD manifested by either one or the combination of the following:
 - Abnormalities of calcium, Phosphorus, PTH, or Vitamin D metabolism
 - B/ Abnormalities in bone turnover, mineralization, volume, linear growth, or strength.
 - V/C : Vascular or other soft-tissue calcification

Definition of Renal Osteodystrophy

- Renal osteodystrophy is an alteration of bone morphology in patients with CKD.
- It is one measure of the skeletal component of the systemic disorder of CKD-MBD that is quantifiable by histomorphometry of bone biopsy.

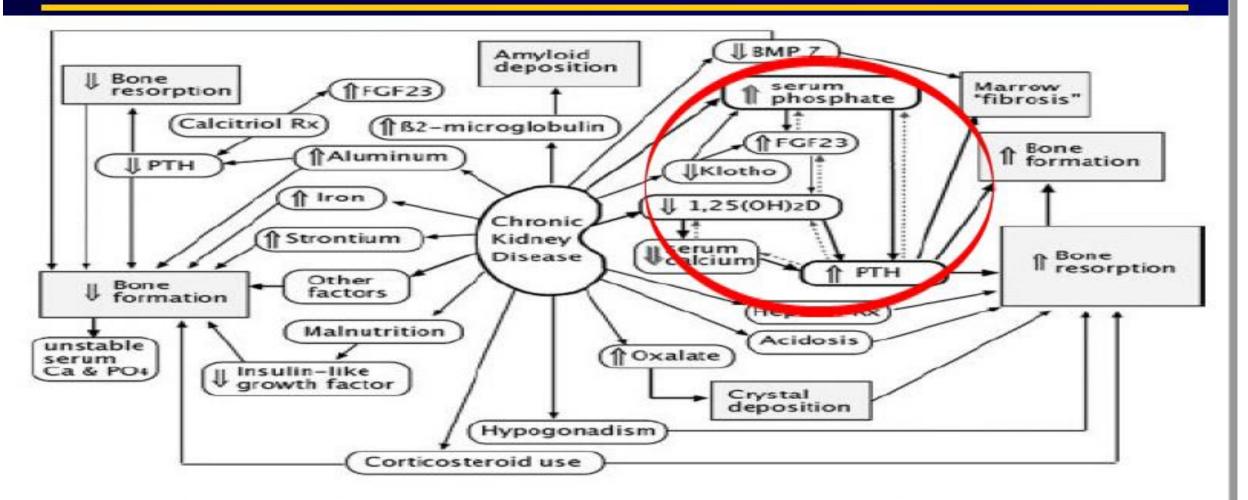
CKD-MBD components

CKD-MBD

Laboratory abnormalities Bone abnormalities

Cardiovascular disase

Fracures


Mortality

DRA

- Carpal tunnel syndrome
- Destructive spondyloarthlopathy
- Joint arthropahty

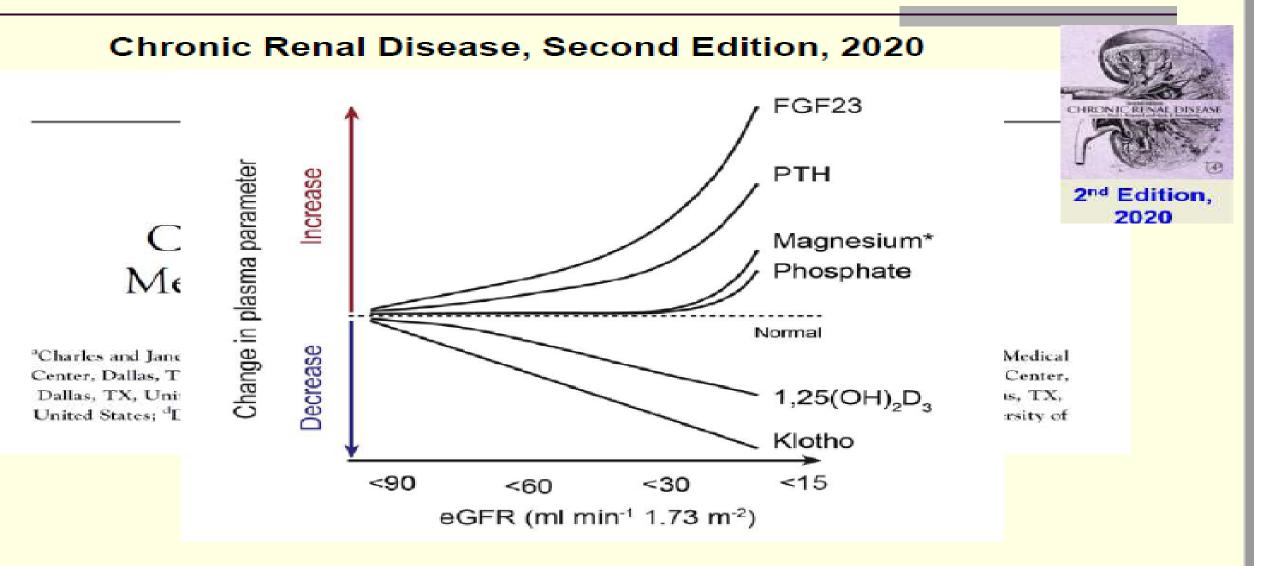
Vascular calcification

Pathophysiologic mechanisms of ROD

Figure 1. Pathophysiologic mechanisms of renal osteodystrophy. The dashed arrows show feedback loops that are "frustrated" by the renal dysfunction.

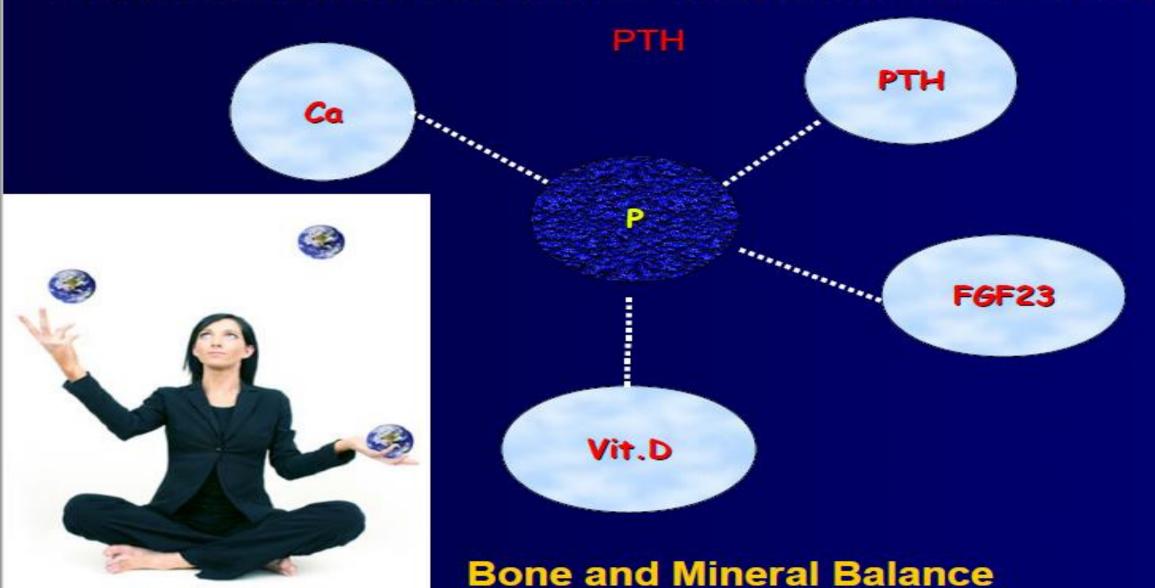
From the Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, 7th Edition.

Table 1. Pathology and Diagnosis of Bone Turnover in CKD

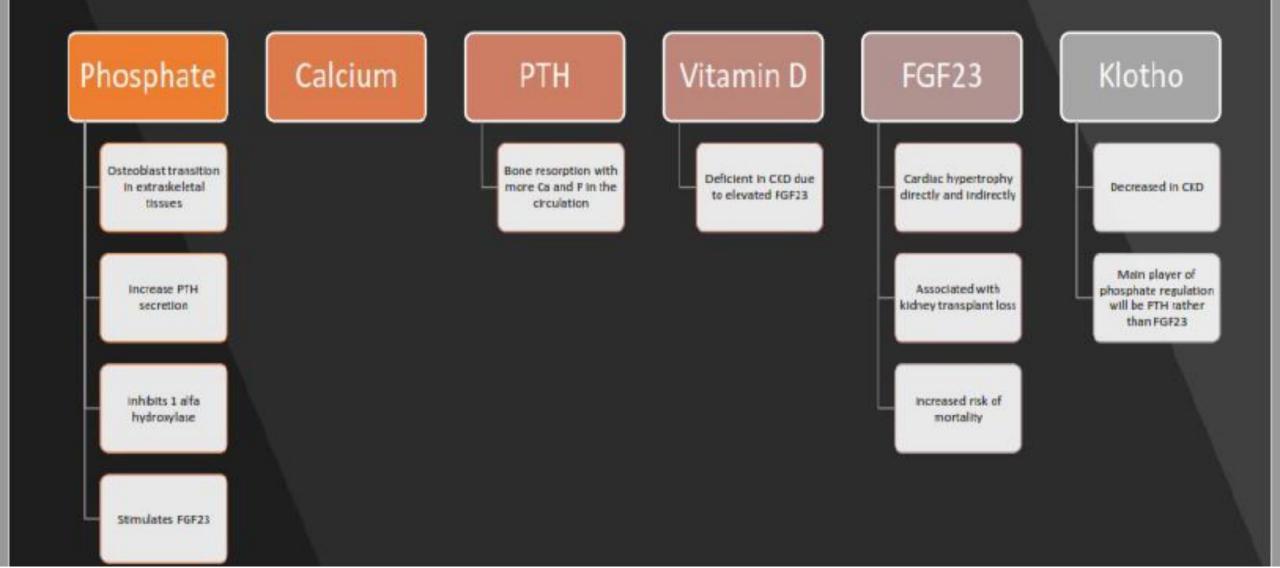

- I. Predominant hyperparathyroidism, high-turnover ROD
 - a. Intact PTH > 500 pg/ml
 - Elevated alkaline phosphatase or bone-specific alkaline phosphatase
- II. Low-turnover disease
 - a. Adynamic bone disorder
 - 1. Intact PTH < 100 pg/ml
 - Normal alkaline phosphatase or bone-specific alkaline phosphatase
 - Low osteocalcin
 - b. Osteomalacia
 - 1. Intact PTH < 100 pg/ml
 - Normal alkaline phosphatase or bone-specific alkaline phosphatase
 - 3. Low osteocalcin
 - Elevated Al³⁺
- III. Mixed uremic osteodystrophy
 - a. PTH > 300 pg/ml
 - b. Elevated Al³⁺
- V. Unknown
 - a. PTH > 100 < 500 pg/ml

Bone Turnover: Biomarkers and Images

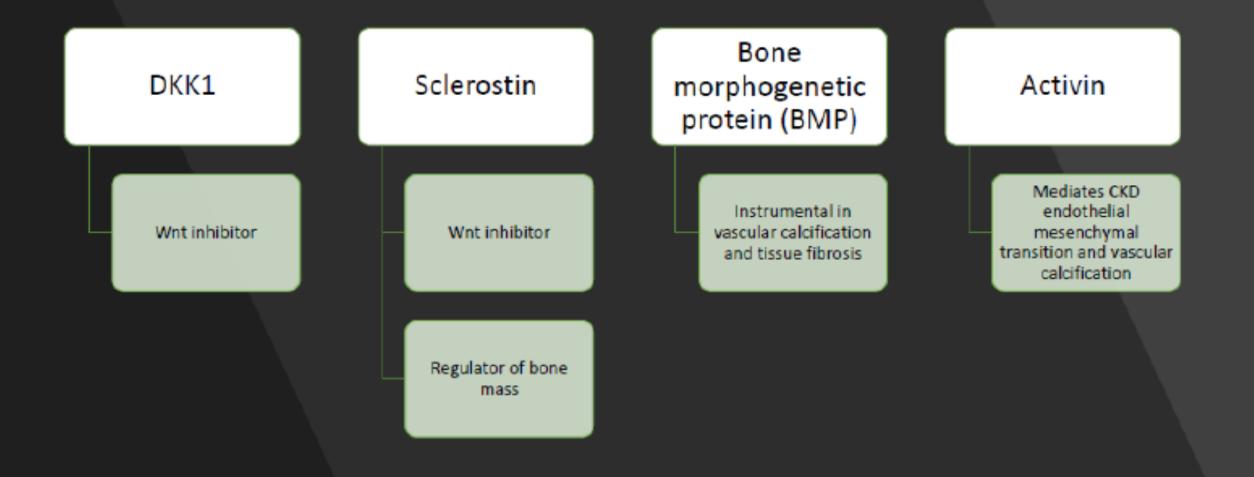
Significance Statement


Abnormal bone turnover of renal osteodystrophy in advanced CKD can only be diagnosed using bone biopsy (gold standard). However, this is an invasive and painful procedure, and thus, it is rarely performed. This study found that three bone biomarkers (bALP, intact PINP, and TRAP5b) and high-resolution bone imaging of distal radius can discriminate patients with low bone turnover from those with nonlow bone turnover as assessed by bone histomorphometry. Hence, the biomarkers and bone imaging may have the potential to replace bone biopsy, particularly in discriminating patients with low bone turnover. They may also be useful in selecting patients for future clinical trials that aim to reduce their fracture risk.

CKD-MBD: Changes in Plasma Mineral Parameters

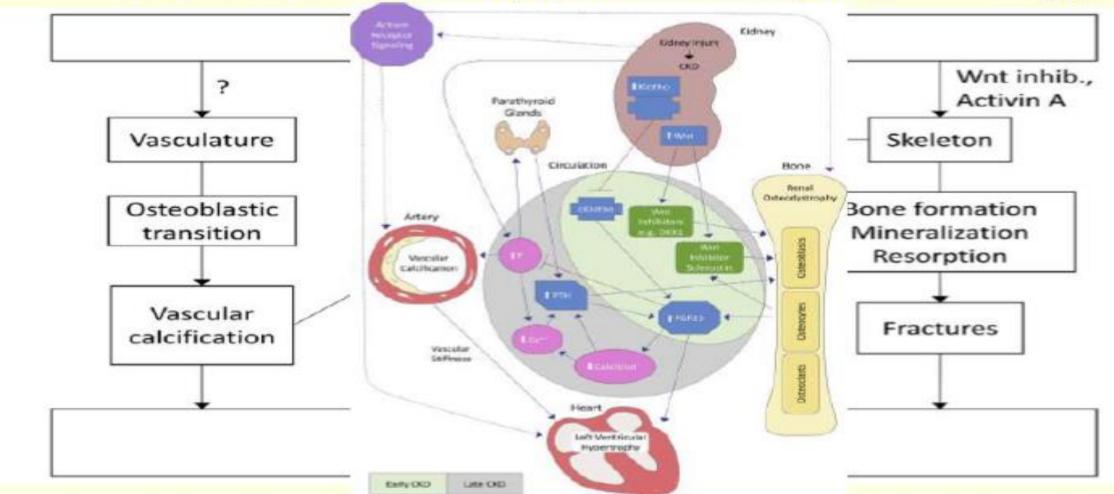


CKD-M(B/V)D Key Players


Complex interdependence of calcium, phosphorus, vitamin D, FGF23 &

Recognized Players of CKD-MBD

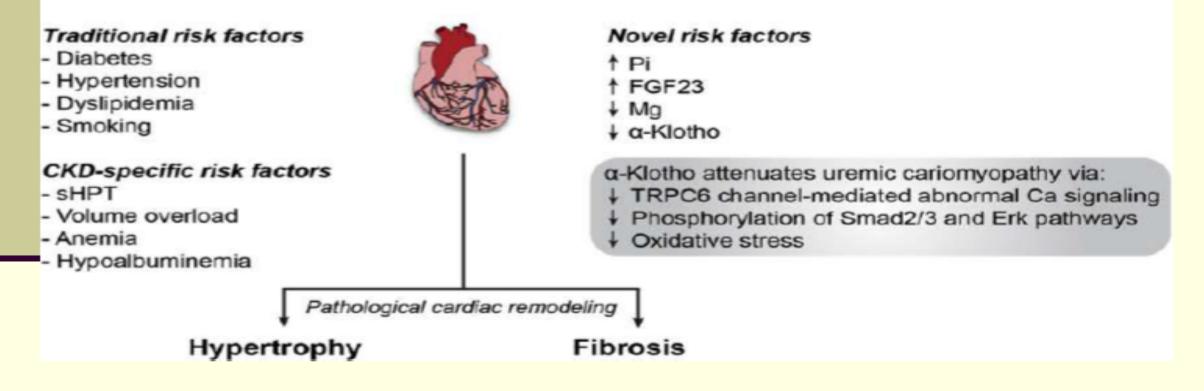
New Players in CKD-MBD


CKD-MBD: An Overview

Chronic Renal Disease, Second Edition, 2020

Urology and Nephrology Center

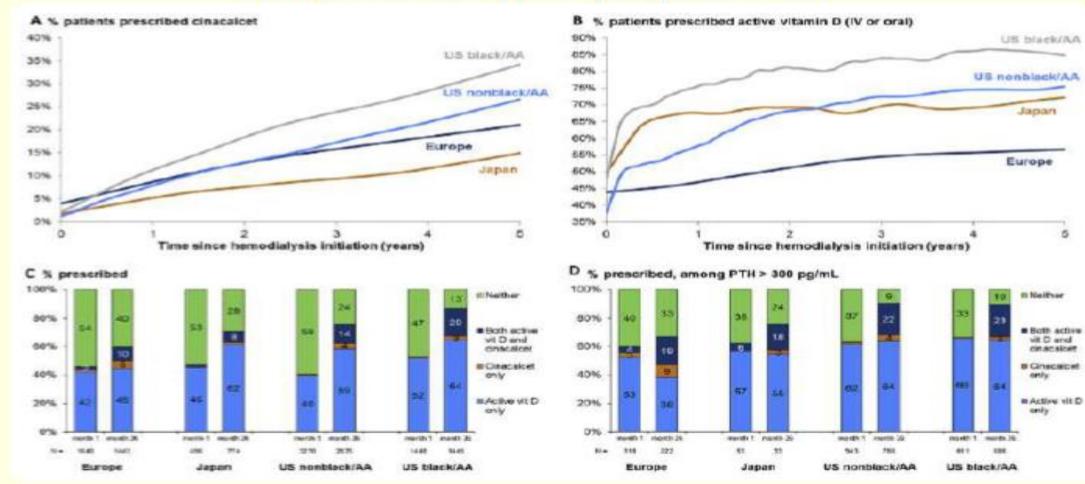
> 2nd Edition, 2020



CKD-MBD:

GChanges in Plasma Mineral Parameters

Chronic Renal Disease, Second Edition, 2020, Chapter 41


Uremic cardiomyopathy

CKD-MBD: International and Racial Differences

Kidney Med Vol 1 | Iss 3 | May/June 2019

Grades of EBM	KDIGO 2009	KDIGO 2017
1A	0	0
1B	2	0
2A	0	0
2B	3	3
2C	10	8
2D	9	3
NOT GRADED	6	8
Total	30	22

CHAPTER 3.1: DIAGNOSIS OF CKD-MBD: BIOCHEMICAL ABNORMALITIES

Kidney Disease: Improving Global Outcomes

3.1.1: We recommend monitoring serum levels of calcium, phosphate, PTH, and alkaline phosphatase activity beginning in CKD G3a *(1C)*. In children, we suggest such monitoring beginning in CKD G2 *(2D)*.

3.1.2: In patients with CKD G3a–G5D, it is reasonable to base the frequency of monitoring serum calcium, phosphate, and PTH on the presence and magnitude of abnormalities, and the rate of progression of CKD (*Not Graded*).

3.1.2 (cont'd.): Reasonable monitoring intervals would be:

- In CKD G3a–G3b: for serum calcium and phosphate, every 6–12 months; and for PTH, based on baseline level and CKD progression.
- In CKD G4: for serum calcium and phosphate, every 3–6 months; and for PTH, every 6–12 months.
- In CKD G5, including G5D: for serum calcium and phosphate, every 1–3 months; and for PTH, every 3–6 months.
- In CKD G4–G5D: for alkaline phosphatase activity, every 12 months, or more frequently in the presence of elevated PTH (see Chapter 3.2).

In CKD patients receiving treatments for CKD-MBD, or in whom biochemical abnormalities are identified, it is reasonable to increase the frequency of measurements to monitor for trends and treatment efficacy and side effects (Not Graded).

3.1.3: In patients with CKD G3a–G5D, we suggest that 25(OH)D (calcidiol) levels might be measured, and repeated testing determined by baseline values and therapeutic interventions *(2C)*.

We suggest that vitamin D deficiency and insufficiency be corrected using treatment strategies recommended for the general population (2C).

3.1.4: In patients with CKD G3a–G5D, we recommend that therapeutic decisions be based on trends rather than on a single laboratory value, taking into account all available CKD-MBD assessments *(1C)*.

3.1.5: In patients with CKD G3a–G5D, we suggest that individual values of serum calcium and phosphate, evaluated together, be used to guide clinical practice rather than the mathematical construct of calcium-phosphate product (Ca x P) (2D).

3.1.6: In reports of laboratory tests for patients with CKD G3a–G5D, we recommend that clinical laboratories inform clinicians of the actual assay method in use and report any change in methods, sample source (plasma or serum), or handling specifications to facilitate the appropriate interpretation of biochemistry data (1B).

CHAPTER 3.2: DIAGNOSIS OF CKD-MBD: BONE

Kidney Disease: Improving Global Outcomes

TESTING FOR CKD-MBD

3.2.1: In patients with CKD G3a-G5D with evidence of CKD-MBD and/or risk factors for osteoporosis, we suggest bone mineral density (BMD) testing to assess fracture risk if results will impact treatment decisions *(2B)*.

3.2.2: In patients with CKD G3a-G5D, it is reasonable to perform a bone biopsy if knowledge of the type of renal osteodystrophy will impact treatment decisions *(Not Graded)*.

3.2.3: In patients with CKD G3a–G5D, we suggest that measurements of serum PTH or bone-specific alkaline phosphatase can be used to evaluate bone disease because markedly high or low values predict underlying bone turnover (*2B*).

3.2.4: In patients with CKD G3a–G5D, we suggest not routinely measuring bone-derived turnover markers of collagen synthesis (such as procollagen type I C-terminal propeptide) and breakdown (such as type I collagen cross-linked telopeptide, cross-laps, pyridinoline, or deoxypyridinoline) (2C).

3.2.5: We recommend that infants with CKD G2–G5D have their length measured at least quarterly, while children with CKD G2–G5D should be assessed for linear growth at least annually *(1B)*.

CHAPTER 3.3: DIAGNOSIS OF CKD–MBD:

VASCULAR CALCIFICATION

Kidney Disease: Improving Global Outcomes

3.3.1: In patients with CKD G3a–G5D, we suggest that a lateral abdominal radiograph can be used to detect the presence or absence of vascular calcification, and an echocardiogram can be used to detect the presence or absence of valvular calcification, as reasonable alternatives to computed tomography-based imaging *(2C)*.

3.3.2: We suggest that patients with CKD G3a–G5D with known vascular or valvular calcification be considered at highest cardiovascular risk (2A).

It is reasonable to use this information to guide the management of CKD-MBD (*Not Graded*).

CKD-MBD: Q

Chronic Renal Disease, Second Edition, 2020, Chapter 41

Which of the following statements about bone examination in CKD is false?

- A. Bone examination in patients with CKD stages ≥3 and evidence of CKD-MBD and/or risk factors for osteoporosis is recommended for diagnosis and prognosis
- B. In patients with advanced CKD and low or normal PTH, DXA measures of BMD predict pathologic fracture risk

C. Noninvasive examination of bone disease yields high negative predictive values for differentiating lowturnover vs. nonlow-turnover

- D. Noninvasive examination of bone disease yields low positive predictive values for differentiating highturnover vs. nonhigh-turnover bone disease
- E. Bone biopsy should be considered in patients with pathological fractures, suspicion of osteomalacia, and refractory hypercalcemia

Kidney Dis 2019, Published online: July 9, 2019

Guidelines

Kidney Dis DOI: 10.1159/000500053 Received: March 31, 2019 Accepted: April 1, 2019 Published online: July 9, 2019

Executive Summary: Clinical Practice Guideline of Chronic Kidney Disease – Mineral and Bone Disorder (CKD-MBD) in China

Zhi-Hong Liu^a Guisen Li^b Ling Zhang^c Jianghua Chen^d Xiaonong Chen^e Jinghong Zhao^f Xinling Liang^g CKD-MBD Guideline Working Group and National Clinical Research Center for Kidney Disease

^aDepartment of Nephrology, Nanjing General Hospital, National Clinical Research Center of Kidney Diseases, Nanjing, China; ^bSichuan Academy of Medical Science and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science, Chengdu, China; ^cDepartment of Nephrology, Sino-Japanese Friendship Hospital, Beijing, China; ^dDepartment of Nephrology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; ^eDepartment of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; ^fDepartment of Nephrology, Third Military Medical University, Chongqing, China; ^gDepartment of Nephrology, Guangdong General Hospital, Guangzhou, China

CKD stage	Serum phosphorus	Serum calcium	ALP	iPTH	25(OH)D
G1-G2	6–12 months	6–12 months	6–12 months	Determine based on the baseline level and CKD progression	
G3a/G3b	6–12 months	6–12 months	6–12 months	Determine based on the baseline level and CKD progression	Determine based on the baseline level and treatment interventions
G4	3–6 months	3–6 months	6–12 months, which can be shortened if iPTH is elevated	6–12 months	Determine based on the baseline level and treatment interventions
G5	1-3 months	1–3 months	6–12 months, which can be shortened if iPTH is elevated	3–6 months	Determine based on the baseline level and treatment interventions

MBD, mineral and bone disorder; CKD, chronic kidney disease; ALP, alkaline phosphatase; iPTH, intact parathyroid hormone. CKD G5 includes CKD G5D; CKD G1–G5T refers to CKD G1–G5.

Kidney Dis 2019, Published online: July 9, 2019 2.2 Assessment of Bone Diseases (BMD/ Biopsy)?

2.2.3 For patients with CKD G3a–G5, we recommend that measurements of serum iPTH and ALP or bone-specific ALP can be used to evaluate bone disease because markedly high or low values predict underlying bone turnover. (2B)

2.2.4 For patients with CKD G3a–G5, where conditions permit, bone-derived collagen metabolism markers can be detected to assess the severity of bone disease. (2C)

Kidney Dis 2019, Published online: July 9, 2019

Chapter 3: Prevention and Treatment of CKD-MBD 3.2 Treatment of SHPT

3.2.4 For patients with CKD G5D requiring PTH-lowering therapy, we recommend calcimimetics, calcitriol, or vitamin D analogs, or a combination of calcimimetics with calcitriol or vitamin D analogs. (2B)

Kidney Dis 2019, Published online: July 9, 2019

Chapter 4: Prevention and Treatment of Osteoporosis in Patients with CKD

4.1 Diagnosis and Evaluation of Osteoporosis

4.1.2 We suggest measuring the BMD of the lumbar spine and hip in patients with CKD G1–G2 regularly to evaluate patients with osteoporosis. (*Not Graded*)

4.1.3 We recommend measuring the BMD in CKD G3a–G5D patients with CKD-MBD and/or risk of osteoporosis to evaluate the risk of fracture. (*2B*)

Fragility Fracture in HD

Key Messages: Patients with hypertension, diabetes, excessive suppression of PTH, and poor nutritional status are more prone to fractures. Serum corrected calcium and ALP were independent risk factors of fragility fracture. Patients with initial fragility fracture had more CV events and higher mortality.

© 2019 S. Karger AG, Basel

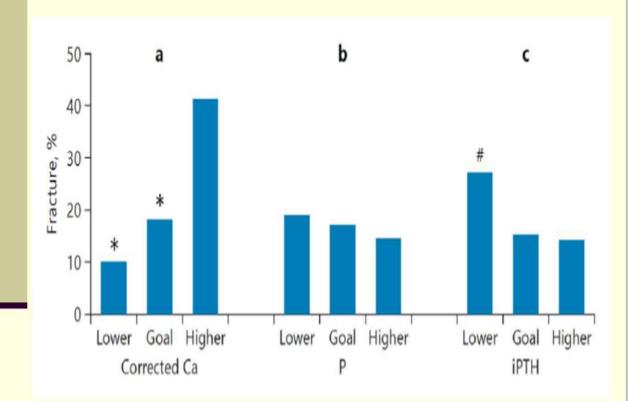
Kidney Dis 2019;5:118-125

Research Article

Kidney Dis 2019;5:118–125 DOI: 10.1159/000494924

Factors and Outcome of Renal Osteodystrophy-Associated Initial Fragility Fracture in End-Stage Renal Disease Patients

Cai Li^a Xue-mei Chen^b Yin Li^{a, c} Yan-lin Zhou^a Jia-ni Yan^a Xiao-gang Du^a


^aDepartment of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; ^bEmergency Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; ^cDepartment of Nephrology and Endocrinology, The People's Hospital of Tongliang District, Chongqing, China

Fragility Fracture in HD: Which is Correct?

h

6

Kidney Dis 2019;5:118-125

Alterations of mineral-bone metabolism are associated with increased risk of fracture. In this study, we analyzed the changes of mineral-bone metabolism-associated parameters in ESRD patients with initial fragility fracture. Higher serum ALP, corrected calcium, and lower serum iPTH levels were found in the FF group compared with the control group (p < 0.05).

No significant differences in phosphorus and calciumphosphorus product were found between the two groups.

We further assessed the incidence of initial fragility fracture in patients with different levels of serum corrected calcium, phosphorus, and iPTH. According to the KDIGO recommendations regarding target corrected calcium (2.1-2.5 mmol/L) and phosphorus (1.13–1.78 mmol/L) or K/DOQI guideline recommendations about target iPTH (150–300 pg/mL) in CKD5 patients, the 354 patients were divided into three subgroups: lower, target, and higher level subgroups, respectively. As shown in Figure 2, fractures were more likely to occur in the higher level subgroups by corrected calcium levels as well as in the lower iPTH group (p < 0.05). However, no differences were found among the various serum phosphorus subgroups (p > 0.05).

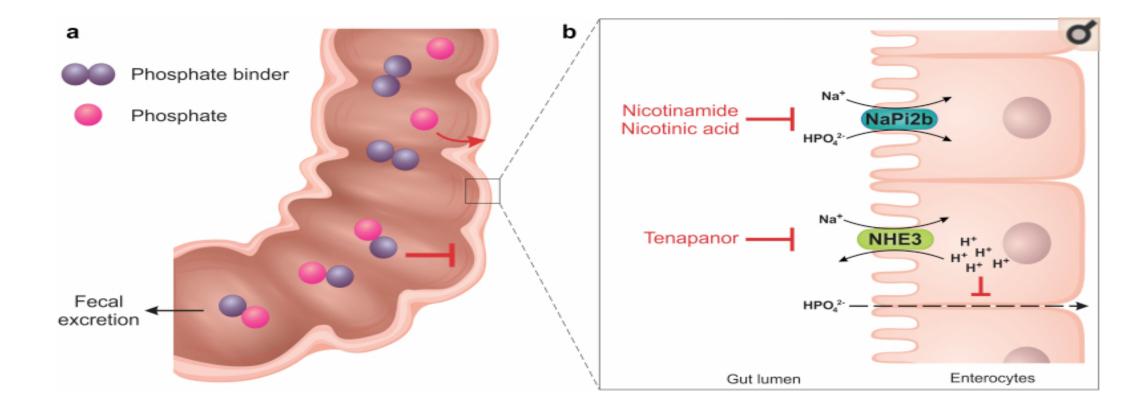
Phosphate Binders

Chronic Renal Disease, Second Edition, 2020, Chapter 41

TABLE 41.2 Phosphate Binders in Clinical Use

Cation	Formulation	Adverse Effects	Cost per Dose
Al ³⁺	Aluminum hydroxide	Osteomalacia Encephalopathy Microcytic anemia	
La ³⁺	Lanthanum carbonate	GI upset Unknown effect on bone	
Ca ²⁺	Calcium acetate Calcium carbonate	Hypercalcemia Ectopic calcification Adynamic bone disease	
Mg ²⁺	Magnesium carbonate	Diarrhea Hypermagnesemia	
Fe ²⁺	Sucroferric oxyhydroxide Ferric citrate	Diarrhea Nausca	
Sevalemar	Sevelamer hydrochloride Sevelamer carbonate	Diarrhea Constipation Metabolic acidosis	

Phosphate Binders

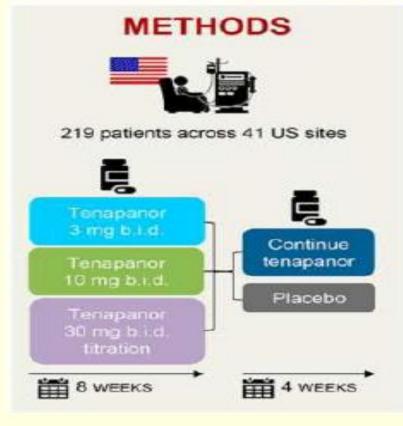

Kidney Int Rep. 2019 Jun 20;4(8):1043-1056

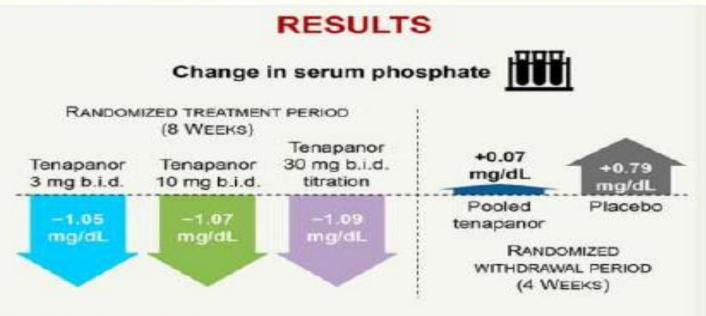
Drug	Usual dose (pill burden) ^a	Advantages	Disadvantages
Calcium carbonate	500-1250 mg (3-6 tablets)	Lower pill burden	Calcium overload
Calcium acetate	667 mg (6-12 capsules)	As effective as calcium carbonate	Calcium overload High pill burden
Magnesium carbonate	63 mg (2-6 capsules)	Good GI tolerance, lower pill burden	Hypermagnesemia
Sevelamer hydrocloride	800 mg (6-12 capsules)	LDL-cholesterol levels, better survival in HD	High pill burden, Gl side effects, metabolic acidosis
Sevelamer carbonate	800 mg (6-12 capsules)	↓ LDL-cholesterol levels, better survival in HD	High pill burden, Gl side effects
Bixalomer	250 mg (6-14 capsules)	Good GI tolerance	High pill burden
Lanthanum carbonate	250-1000 mg (3-6 chewable tablets)	Lower pill burden, good GI tolerance	Low solubility Tissue accumulation, eg, bone
Ferric citrate	210 mg (4-5 toblets)	Lower pill burden, ↓ iron suplementation ↓ ESA doses	GI side effects (mild)
Sucroferric oxyhydroxide	500 mg (2–6 chewable tablets)	Lower pill burden	GI side effects (mild)

Published online 2019 Jun 20. doi: 10.1016/j.ekir.2019.06.002

Copyright/License <u>Request permission to reuse</u>

Figure 1

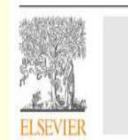



Mechanisms of action of phosphate-lowering pharmacological agents. (a) Phosphate binders reduce the intestinal absorption of dietary phosphate by forming a nonabsorbable compound in the gastrointestinal tract lumen that is excreted in the feces. (b) Nicotinic acid (niacin) and nicotinamide (niacinamide) inhibit sodium-dependent, active intestinal phosphate absorption via a reduction in NaPi2b expression; tenapanor reduces intestinal sodium and phosphate absorption by inhibiting the sodium/hydrogen ion-exchanger isoform 3 (NHE3), leading to intracellular proton accumulation and inducing a conformational change in tight junction proteins, thereby decreasing permeability to paracellular phosphate transport.

Phosphate Control in HD: Tenapanor Scenario

J Am Soc Nephrol. 2019 Apr;30(4):641-652

CONCLUSION


Tenapanor significantly reduced elevated serum phosphate in patients on hemodialysis with hyperphosphatemia.

Conclusion

The PCT showed to be efficient in the maintenance of serum phosphorus in the individuals who adhered well to the tool, without the administration of phosphate binders. Such a method can assist in patient adherence to treatment and enables better diet flexibility

Phosphorus Control in HD: Effect of PCT

Clin Nutr ESPEN. 2019 Aug;32:153-157

L

Contents lists available at ScienceDirect Clinical Nutrition ESPEN

journal homepage: http://www.clinicalnutritionespen.com

Original article

Phosphorus Counting Table for the control of serum phosphorus levels without phosphate binders in hemodialysis patients

Vivianne Reis Bertonsello-Catto ^{a,*}, Leandro Junior Lucca ^b, José Abrão Cardeal da Costa ^c

^a Graduaue Program in Science, Department of Clinical Medicine, Ribeirão Preto Medical School – São Paulo University, Brazil
^b CKD-MBD Unit, Nephrology Division, Department of Clinical Medicine, Ribeirão Preto Medical School – University of São Paulo, Brazil
^c Nephrology Division, Department of Clinical Medicine, Ribeirão Preto Medical School – University of São Paulo, Brazil

Phosphorus Control in CKD3b/4 CKD: COMBINE Trial

www.jasn.org

EDITORIAL

Dual Inhibition of Gastrointestinal Phosphate Absorption: More Questions Than Answers

Wing-Chi G. Yeung,¹ Nigel D. Toussaint,^{2,3} and Sunil V. Badve^{1,4}

¹Department of Renal Medicine, St. George Hospital, Sydney, Australia; ²Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia; ³Department of Medicine, University of Melbourne, Parkville, Victoria, Australia; and ⁴Renal and Metabolic Division, The George Institute for Global Health, University of New South Wales Medicine, Sydney, New South Wales, Australia

Paricalcitol Vs. Calcitriol in Dialysis Patients

Therapeutic Apheresis and Dialysis Feb 2019; 23(1):73-79

Therapeutic Apheresis and Dialysis

G

.

Therapeutic Apheresis and Dialysis 2019; 23(1):73–79 doi: 10.1111/1744-9987.12760 © 2018 International Society for Apheresis, Japanese Society for Apheresis, and Japanese Society for Dialysis Therapy

Comparison of Paricalcitol and Calcitriol in Dialysis Patients With Secondary Hyperparathyroidism: A Meta-Analysis of Randomized Controlled Studies

Tong Zhang,1 Hongbo Ju,2 Haojun Chen,2 and Wen Wen36

Departments of ¹Gastroenterology, ³Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, and ²Nephrology Department, Fenghua People's Hospital, Ningbo, China Paricalcitol and calcitriol result in similar ≥50% reduction of parathyroid hormone, calcium concentration, phosphate concentration, calcium phosphate, alkaline phosphatase, hypercalcemia, adverse events, and serious adverse events for secondary hyperparathyroidism in dialysis patients.

Vitamin K2 and Vascular Calcification

Am J Clin Nutr. 2019 Aug 6. pii: nqz147

Original Research Communications ASN

Vitamin K $(n = 35)^1$

Gr

Placebo $(n = 33)^1$

The effect of menaquinone-7 supplementation on vascular calcification in patients with diabetes: a randomized, double-blind, placebo-controlled trial

SR Zwakenberg,¹ PA de Jong,² JW Bartstra,² R van Asperen,^{1,2} J Westerink,³ H de Valk,⁴ RHJA Slart,⁵ G Luurtsema,⁵ JM Wolterink,⁶ GJ de Borst,⁷ JA van Herwaarden,⁷ MA van de Ree,⁸ LJ Schurgers,⁹ YT van der Schouw,¹ and JWJ Beulens^{1,10}

¹Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands; ²Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands; ³Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands; ⁴Department of Endocrinology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands; ⁵Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands; ⁶Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands; ⁷Department of Vascular Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands; ⁸Department of Internal Medicine, Diakonessenhuis, Utrecht, Netherlands; ⁹Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Medical Centers, Amsterdam, Netherlands;

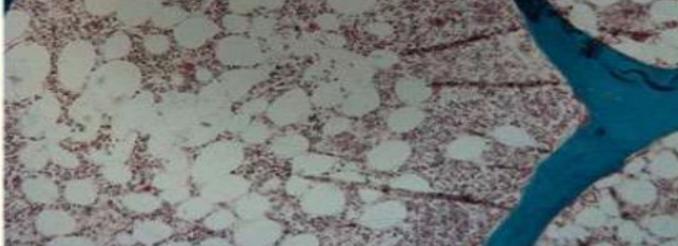
Discussion

In contrast to our hypothesis, active vascular calcification on 18F-NaF PET scan tended to increase after MK-7 supplementation compared with placebo during 6-mo intervention. In addition, no effect of MK-7 supplementation on CT calcification mass was found. Therefore, this study does not support that MK-7 supplementation inhibits vascular calcification

Case Scenario

JBMR Plus. 2019 Feb 27;3(7):e10176.

A 51-year-old woman on dialysis with persistent hypercalcemia despite low calcium intake and no vitamin D supplements.


Case Scenario

JBMR Plus. 2019 Feb 27;3(7):e10176.

Do you agree to use teriparatide to treat this case?

Demeclocycline-labeled trans-iliac bone biopsy with Goldner's stain

Parathyroidectomy: Long-term Outcomes

Semin Dial. 2019, in press

DOI: 10.1111/sdi.12833

REVIEW ARTICLE

Long-term outcomes and management considerations after parathyroidectomy in the dialysis patient

TABLE 1 Survival outcomes after PTX in dialysis patients

Author	Vear	Pepulation	Time period	Study design	Result
Li-Chun Ho et al ^{ose}	2014	Nationwide dialysis cohort, Taiwan	1098-2012	Case-control study with matching for propersity and for radiosuclide PTH imaging	PTX had significant 20%-25% lower risk tor all-cause mortality
Ivarison et al ^{rea}	2015	Swedish Renal Registry	1991-2009	Nested case-control study matched for gender, age, cause of ESRD (N: 423/1234).	RR of ceath for PTX: 0.80 (95% CI 0.65-0.99)
Normabia et al ¹²⁸	2015	Registry - Japanese Society for Dialysis Therapy	1-year follow up	4428 with PTX vs 4426 properaity matched controls	PTX reduced all-cause mortality by 34% and cardiovascular mortality by 45%.
Kostenbaum et _{al} pen:	2004	USEDS	1008-3001	Case-control study matched by age, race, gender, cause of ES2D, dialysis duration, prior transplant status, dialy- sis modality. (N: 8558/4558)	FTX 3D-day postaperative mortality rate 3.1%; higher abort-term, and lower long- term mortality rates; Median survival FTX: 53.4 mo (P5% CI: 51.2-56.4); Control 46.8 mo (95% CI: 54.7-68.9)
Apetrii et al ^{cas}	2017	MEDUNE Cochrane Literary Clinicalitrials gov ENBASE	Inception to October 2016	Meta-analysis: 35 retrospective cohort studies including 24 048 patients	PTX decreased ai ali-cause mortality (RR 0.74: 95% Cl of 0.56 C.R.3 bi cardiovascu- lar mortality (RR 0.37)
Chen et al ¹⁴⁸	2016	MEDUNE Cochrane Library EMBASE	1974-2015	Meta-analysis 13 retrospective studies; 30 052 patients treated with PTX vs 12 001 modically treated.	PTX -20% reduction in all-cause mortality. 37% is cardiovascular mortality.

TABLE 1 Survival outcomes after PTX in dialysis patients

Author	Year	Population	Time period	Study design	Result
Li-Chun Ho et al ¹	³⁵ 2016	Nationwide dialysis cohort, Taiwan	1998-2010	Case-control study with matching for propensity and for radionuclide PTH imaging	PTX had significant 20%-25% lower risk for all-cause mortality
lvarsson et al ¹⁵⁹	2015	Swedish Renal Registry	1991-2009	Nested case-control study matched for gender, age, cause of ESRD (N: 423/1234).	RR of death for PTX: 0.80 (95% CI 0.65-0.99)
Komaba et al ¹²⁹	2015	Registry - Japanese Society for Dialysis Therapy	1-year follow up	4428 with PTX vs 4428 propensity matched controls	PTX reduced all-cause mortality by 34% and cardiovascular mortality by 41%.
Kestenbaum et al ¹⁶⁰	2004	USRDS	1998-2001	Case-control study matched by age, race, gender, cause of ESRD, dialysis duration, prior transplant status, dialy- sis modality. (N: 4558/4558)	PTX 30-day postoperative mortality rate 3.1%; higher short-term, and lower long- term mortality rates; Median survival PTX: 53.4 mo (95% Cl: 51.2-56.4); Control: 46.8 mo (95% Cl: 44.7-48.9).
Apetrii et al ¹²⁸	2017	MEDLINE Cochrane Library Clinicaltrials.gov EMBASE	Inception to October 2016	Meta-analysis: 15 retrospective cohort studies including 24 048 patients	PTX decreased: a) all-cause mortality (RR 0.74; 95% CI of 0.66-0.83) b) cardiovascu- lar mortality (RR 0.59)
Chen et al ¹⁶¹	2016	MEDLINE Cochrane Library EMBASE	1974-2015	Meta-analysis: 13 retrospective studies; 10 052 patients treated with PTX vs 12 001 medically treated.	PTX –28% reduction in all-cause mortality; 37% in cardiovascular mortality.

inclose v

Parathyroidectomy: Long-term Outcomes

Semin Dial. 2019 Sep;32(5):444-451

			A	
IT SHE WAS AN	-10 CW	NO. 100 APR	11 Str. 18	ALC: 12 12 12 12
NAMES OF TAXABLE PARTY.	12. U.S.	A 16 16	ALC: NUMBER	12772

REVIEW ARTICLE

WILEY Seminars in Dialosis

Parathyroidectomy in dialysis patients: Indications, methods, and consequences

María E. Rodríguez-Ortiz^{1,2,3,4} | María V. Pendón-Ruiz de Mier^{1,2,3,4} Mariano Rodríguez^{1,3,4,5}

Parathyroidectomy: Timing

Parathyroidectomy

Ren Fail. 2019 Nov;41(1):921-929

182 dialysis patients who underwent PTX between February 2012 and January 2018

RENAL FAILURE 2019, VOL. 41, NO. 1, 921-929 https://doi.org/10.1080/0886022X.2019.1666724 Taylor & Francis Taylor & Francis Group

CLINICAL STUDY

Evaluation of laboratory parameters and symptoms after parathyroidectomy in dialysis patients with secondary hyperparathyroidism

Yi Zhang* , Ying Lu*, Sheng Feng, Zhoubing Zhan and Huaying Shen

Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, China

Conclusion: PTX is a safe and effective therapy for treating SHPT that is refractory to medical therapies and accompanied by related signs and symptoms in dialysis patients. All three operative techniques were effective in controlling SHPT.

Etelcalcetide in Patients on Hemodialysis

J Clin Med. 2019 Jul 20;8(7). pii: E1066.

Journal of Clinical Medicine MDPI

Article n = 168 (14%) patients were on treatment with etelcalcetide, Etelcalcetide in Patients on Hemodialysis with Severe Secondary Hyperparathyroidism. Multicenter Study in "Real Life"

Domenico Russo^{1,*}, Rocco Tripepi², Fabio Malberti³, Biagio Di Iorio⁴, Bernadette Scognamiglio¹, Luca Di Lullo⁵, Immacolata Gaia Paduano¹, Giovanni Luigi Tripepi² and Vincenzo Antonio Panuccio⁶

- ¹ Department of Public Health, University of Naples FEDERICO II, 80131 Naples, Italy
- ² Institute of Clinical Physiology (IFC-CNR) Research Unit of Reggio Calabria, 89124 Reggio Calabria, Italy
- ³ Department of Nephrology Cremona Hospital, 26100 Cremona, Italy
- ⁴ Department of Nephrology AORN Cardarelli, 80131 Naples, Italy
- ⁵ Department of Nephrology Ospedale "Parodi Delfino" di Colleferro (Roma), 00034 Colleferro, Roma, Italy
- ⁶ Nephrology, Dialysis and transplantation Unit G.O.M. "Bianchi Melacrino Morelli", 89121 Reggio Calabria, Italy

n = 1190 patients on the charge. From this cohort, n = 168 (14%) patients were on treatment with etelcalcetide,

A median weekly dose of etelcalcetide was 15 mg PTH declined median value of 636 pg/mL to 357 pg/mL.

The median time for responders was 53 days; the percentage of responders increased (from baseline 27% to 63%)

Few patients had symptomatic hypocalcemia requiring etelcalcetide withdrawal (four cases (3%) at 30-day control, two cases (2%) at 60-day, one case (1%) at 90-day control).

Side effects with etelcalcetide were lower.

Etelcalcetide is a new therapeutic option for SHPT with low side effects and pills burden. Etelcalcetide may improve adherence to therapy, avoiding unremitting SHP. It remains to be assessed whether etelcalcetide may reduce parathyroidectomy, vascular calcification, or mortality. Being etelcalcetide very potent in suppressing PTH levels, even in severe SHPT, future studies should evaluate the potential risk of more adynamic bone disease during long-term therapy.

Secondary Hyperparathyroidism: Overview

Therapeutic Apheresis and Dialysis Aug 2019; 23(4):309–318

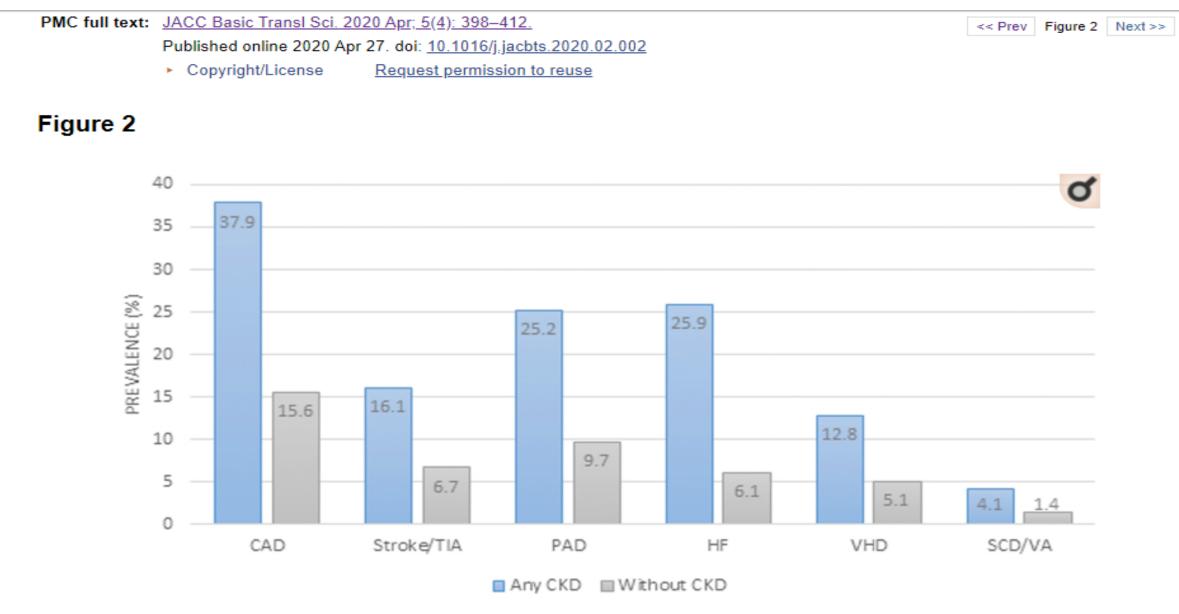
Secondary hyperparathyroidism

315

	Cinacalcet	Etelcalcetide	Evocalcet
Binding site	Transmembrane	Extracellular	Transmembrane
Half-life [†]	30–40 h	15.6 days	20–33 h
Period with a maximal decrease of PTH [‡]	4–12 h	0.5–24 h	4–12 h
Period with a maximal decrease of Ca [‡]	8–12 h	8 h–8 days	12–24 h
Metabolic organ	Liver	None	Liver
Risk of drug-drug interaction	High	Low	Low
Elimination in dialysis	õ	Approximately 60%	0
CaSR activation concentration (EC50)	$5.1 \times 10^{-8} \text{ M}$	5.3×10^{-7} M	6.7×10 ⁻⁸ -1.6×10 ⁻⁷ M

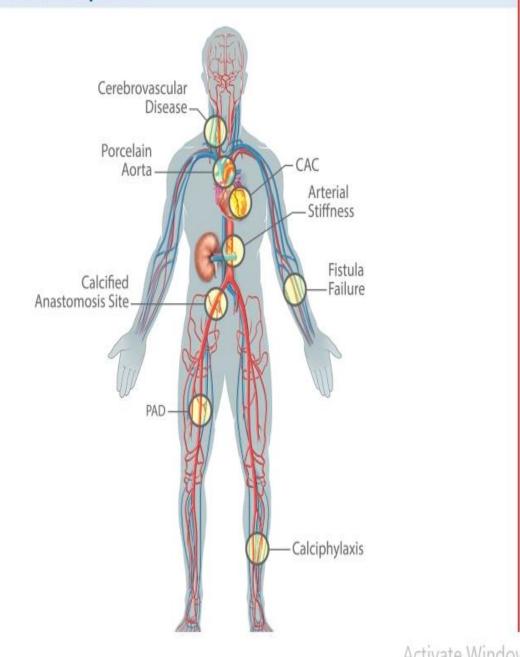
TABLE 3. Pharmacokinetic properties of calcimimetics

[†]In dialysis patients (dialytic half-life for etelcalcetide [after three times per week of 5 mg for 12 weeks administration]). [‡]Single administration. CaSR, Ca-sensing receptor; PTH, parathyroid hormone.



Case Scenario

Am J Case Rep. 2019 Aug 9;20:1170-1174



Cardiovascular Disease Burden in a Sample of Medicare Beneficiaries

Cardiovascular disease burden in a sample of Medicare beneficiaries in the United States Renal Data System 2016 sample. CAD = coronary artery disease; PAD = peripheral arterial disease; SCD = sudden cardiac death; TIA = transient ischemic attack; VA = ventricular arrhythmia;

JACC Basic Transl Sci

CENTRAL ILLUSTRATION Distribution of Vascular Calcification With Attendant Clinical Consequences

Distribution of Vascular Calcification

Vascular calcification at the carotid vessels is associated with increased risk of stroke .

proximal aorta can cause a porcelain aorta that can prohibit cardiothoracic surgery.

Calcification of the coronary linked to increased cardiovascular mortality & increased atherothrombosis.

Calcification of the aorta and the distal vessels is associated with increased arterial stiffness.

Calcification of the iliofemoral vessels at the site of anastomosis has been associated with graft failure and worse transplantation outcomes

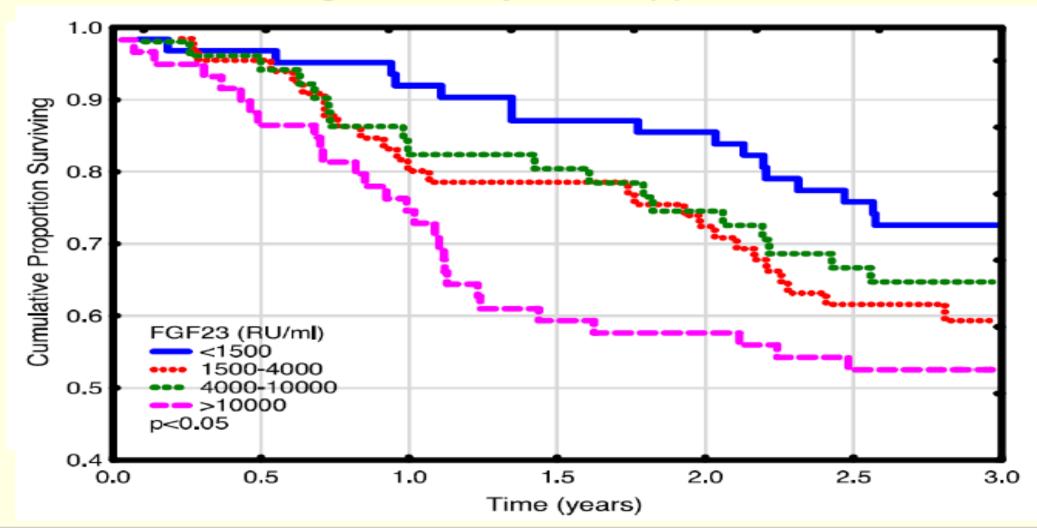
Calcification of the radial artery and fistula site is more generally associated with early fistula failure

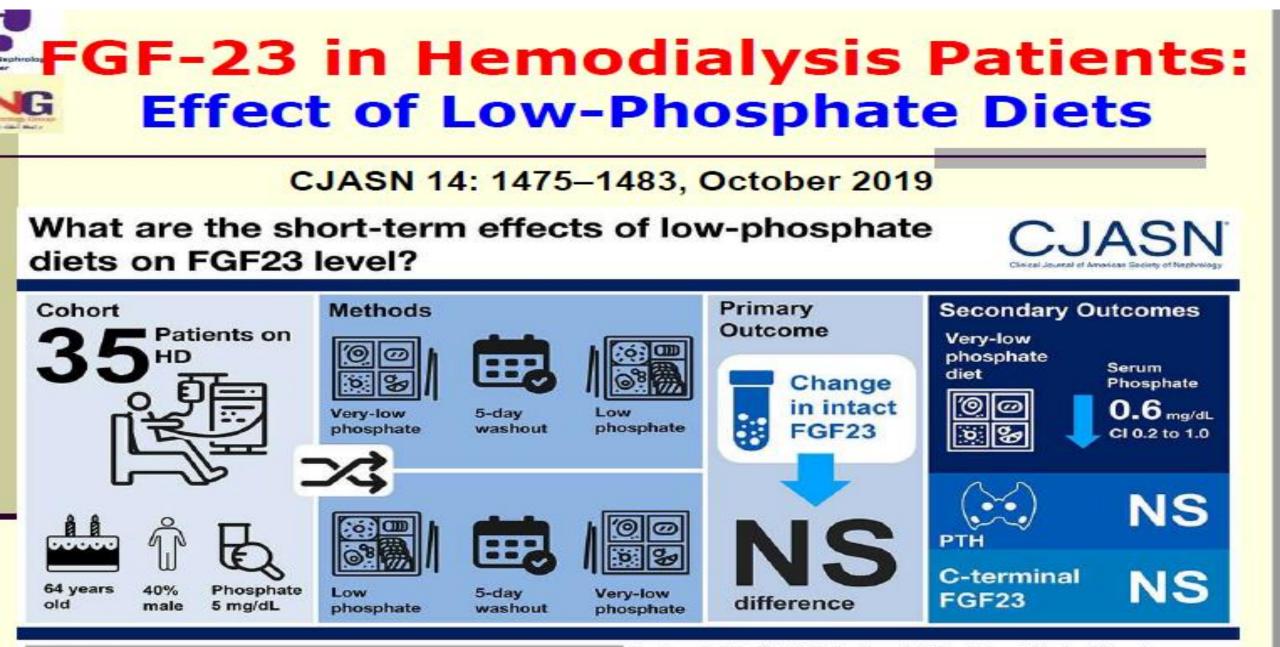
. Calcification of the lower limb arteries : peripheral arterial disease (PAD) (claudication, limb ischemia) as well as arterial stiffness

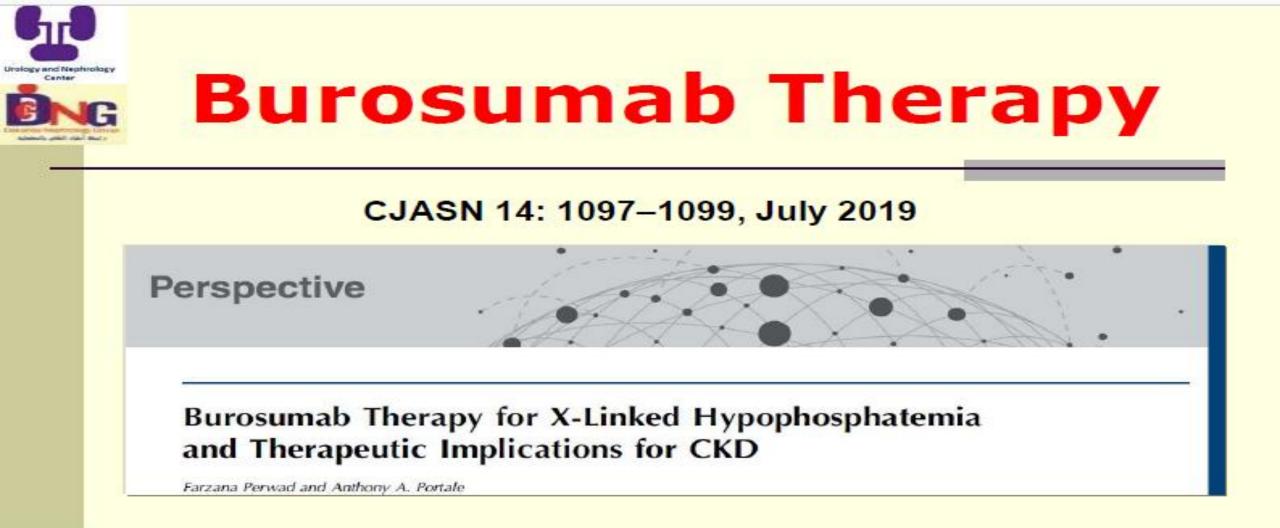
. **Calciphylaxis** is a severe and accelerated form of calcification, predominantly localized in the medial layer of skin arterioles and commonly affects the lower limbs but can occur anywhere.

Calciphylaxis: Overview

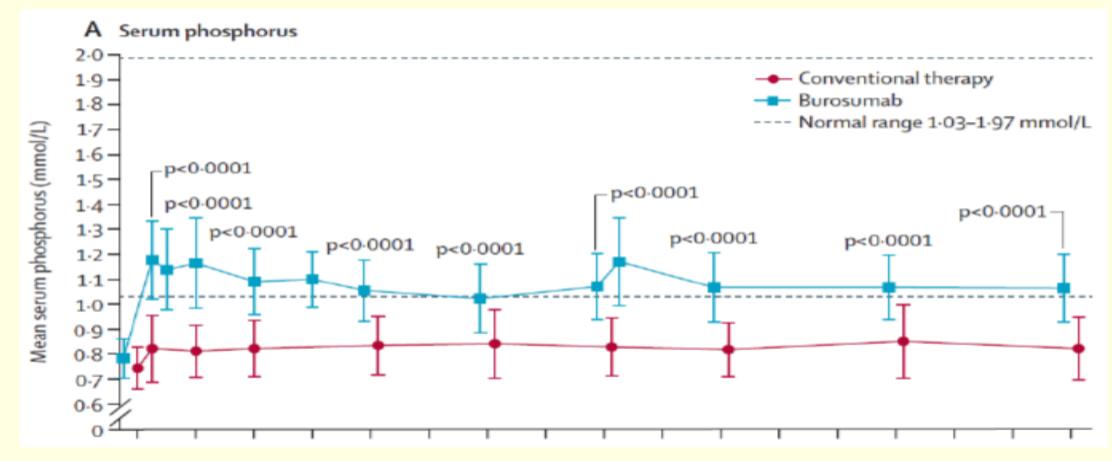
Adv Skin Wound Care. 2019 May;32(5):205-215.




Calciphylaxis: Diagnosis, Pathogenesis, and Treatment


FGF23 in HDPatients: LVH, EF and Survival

Nefrologia. 2019 May - Jun;39(3):258-268


Conclusions The very-low-phosphate diet offered no benefit for FGF23 reduction but provided a greater phosphate-lowering effect. Wan-Chuan Tsai, Hon-Yen Wu, Yu-Sen Peng, et al. Short-Term Effects of Very-Low-Phosphate and Low-Phosphate Diets on Fibroblast Growth Factor 23 in Hemodialysis Patients: A Randomized Crossover Trial. CJASN doi: https://doi.org/10.2215/CJN.04250419. Visual Abstract by Pablo Garcia, MD

X Linked Hypophosphatemia: Burosumab Therapy

Lancet, 2019; 2019 Jun 15;393(10189):2416-2427

FGF23 and Inflammation: Translational Statement

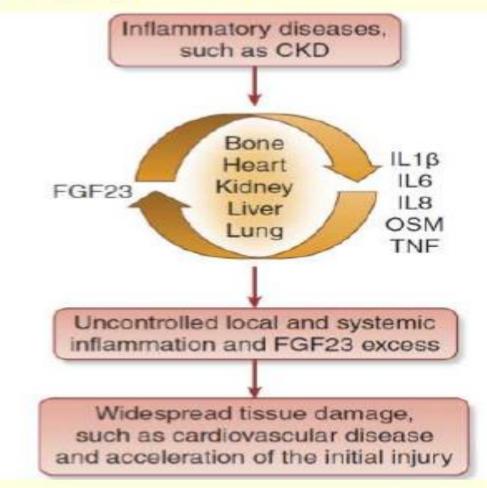
Kidney International (October 2019) 96, 890-905

basic research

www.kidney-international.org

Tumor necrosis factor stimulates fibroblast growth factor 23 levels in chronic kidney disease and non-renal inflammation

Daniela Egli-Spichtig^{1,2,3,14}, Pedro Henrique Imenez Silva^{1,2,14}, Bob Glaudemans^{1,2}, Nicole Gehring^{1,2}, Carla Bettoni^{1,2}, Martin Y.H. Zhang³, Eva M. Pastor-Arroyo^{1,2}, Désirée Schönenberger^{1,2}, Michal Rajski^{1,2}, David Hoogewijs^{1,2}, Felix Knauf⁴, Benjamin Misselwitz⁵, Isabelle Frey-Wagner⁵, Gerhard Rogler⁵, Daniel Ackermann⁶, Belen Ponte⁷, Menno Pruijm⁸, Alexander Leichtle⁹, Georg-Martin Fiedler⁹, Murielle Bochud^{2,10}, Virginia Ballotta¹¹, Sandra Hofmann¹¹, Farzana Perwad³, Michael Föller¹², Florian Lang¹³, Roland H. Wenger^{1,2}, Ian Frew^{1,2} and Carsten A. Wagner^{1,2}


¹Institute of Physiology, University of Zurich, Zurich, Switzerland; ²Swiss National Center of Competence in Research NCCR-Kidney,CH, University of Zurich, Zurich, Switzerland; ³Department of Pediatrics, Division of Nephrology, University of California, San Francisco, San Francisco, California, USA; ⁴Division of Nephrology, Charité – Universitätsmedizin Berlin, Berlin, Germany; ⁵University Hospital Zurich, Clinic for Gastroenterology and Hepatology, Zurich, Switzerland; ⁶Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; ⁷Department of Nephrology, University Hospital of Geneva (HUG), Geneva, Switzerland; ⁸Department of Nephrology, Lausanne University Hospital (CHUV), Lausanne, Switzerland; ⁹Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Bern, Switzerland; ¹⁰Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital (CHUV), Lausanne, Switzerland; ¹¹Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands; ¹²Institute of Physiology, University of Hohenheim, Stuttgart, Germany; and ¹³Institute of Physiology I, University of Tübingen, Tübingen, Germany

FGF23 and Inflammation: Vicious Coalition

Kidney International (October 2019) 96, 813-815

FGF23 and inflammation—a vicious coalition in CKD

Brian Czaya¹ and Christian Faul¹

Post-transplant Bone Biopsy

Kidney International (2019) 96, 1100-1104

Comparison of serum levels with bone content and gene expression indicate a contradictory	Sclerostin		β-catenin		RANKL		OPG		FGF-23	
effect of kidney transplantation on sclerostin										
Marie solia Convez Unia Repension Analys ¹³ , typ: Denzarde Basetar Marques ¹³ , Fabiana Gimgetti Gradelli", Lazia Fukuhara", Laciarie Martuchi des Rec', Melani Custódio ¹ , Vanca Jorgetti "Resilene Mota Cke ¹³ , Elao David-Neto" and Rosa M.A. Moytés ¹³	Pre	Post	Pre	Post	Pre	Post	Pre	Post	Pre	Post
www.kidney-international.org										

=

Ł

Kidney International (November 2019) 96, 1059–1070 Unraveling the osteocyte in CKD-MBD post-renal transplantation

Marciana Laster¹, Renata C. Pereira¹ and Isidro B. Salusky¹

Transplantation and Bone Disease

Cochrane Database Syst Rev. 2019 Oct 22; in press Cochrane Library 198 pages

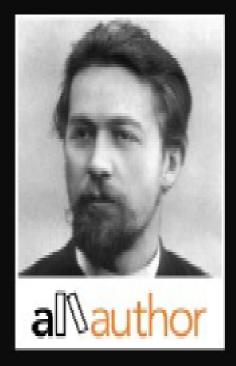
Cochrane Database of Systematic Reviews

Interventions for preventing bone disease in kidney transplant recipients (Review)

Palmer SC, Chung EYM, McGregor DO, Bachmann F, Strippoli GFM

Main results

Authors' conclusions


Bisphosphonate therapy may reduce fracture and bone pain after kidney transplantation, however low certainty in the evidence indicates it is possible that treatment may make little or no difference. It is uncertain whether bisphosphonate therapy or other bone treatments prevent other skeletal complications after kidney transplantation, including spinal deformity or avascular bone necrosis. The effects of bone treatment for children and adolescents after kidney transplantation are very uncertain.

TAKE-HOME MESSAGE

- Chronic kidney disease-mineral and bone disorder (CKD-MBD) patients have a huge morbidity and mortality.
- Only relatively minor progress in therapeutic strategies has been made in the past decades.
- This is at least partially due to a lack of predictive diagnostic tools allowing personalized treatment of CKD-MBD patients
- Without precise diagnostic tools a personalized therapy is not possible. This, however, was part of the success story in oncology.

- However, there is hope; Researchers highlighted key recommendations in areas of controversy or conjecture in the management of (CKD-MBD) in a recent synopsis of the (KDIGO) 2017.
- The original update, published in *Kidney International* (2017;7(Suppl 1):1-59), resulted in 15 revised recommendations based on evidence of varying strengths accumulated since the 2009 KDIGO guidelines
- They described the recent progress in the diagnosis of disturbances of the PTH, calcium & phosphate & metabolism in patients with CKD plus the currently available imaging modalities to Dx. different subcategories of CKD-MBD.
- These new tools may have the potential of allowing personalized therapy for the treatment of CKD-MBD and hence improving outcome.

Knowledge is of no value unless you put it into practice.

-Anton Chekhov